If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+4x^2+3+3x=0
We add all the numbers together, and all the variables
4x^2+7x+3=0
a = 4; b = 7; c = +3;
Δ = b2-4ac
Δ = 72-4·4·3
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-1}{2*4}=\frac{-8}{8} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+1}{2*4}=\frac{-6}{8} =-3/4 $
| 4x+4x^2+3+3x=) | | X+5x-15=x+235 | | 1.4x+3=17 | | 6x+3=9+8x | | 5x+3=6x+15 | | 2x,-3=0 | | 5/6x=8=-11 | | (5x+9x+6x)-(-9x-20x-+6x)=0 | | 5/6x+8=-11 | | 3x2-6x+12=0 | | -2(4s-5)-10=-2(6s+4)-2 | | (9x^2+12)-(7x^2+10x+13)=0 | | -37=5v-7 | | x=15-9+2 | | 3(6x-2)=-2(5x-4) | | 8+2/3(6x+30)=8 | | Y=20610+26x | | (8)/(5)a=-6 | | 8/1=10/1=x | | -16x=61 | | 12(v+1)-4v=4(2v+4)-22 | | 50+.40x=30+.80x | | 40d=60+(20d) | | 13/3=u/10 | | 7u+2u=63 | | 10x+6x=400 | | 7x-50=50-3x | | -9+8x=12+11x | | 5a-11=29 | | 4k+7(-4-2k=-2(k-2) | | 2-8x=- | | 2x+12+3x+18=120 |